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Abstract 
 
Artificial neural networks have emerged as computationally plausible models of human 
language processing. A major criticism of these models is that the amount of training data they 
receive far exceeds that of humans during language learning. Here, we use two complementary 
approaches to ask how the models’ ability to capture human neural and behavioral responses to 
language is affected by the amount of training data. First, we evaluate GPT-2 models trained on 
1 million, 10 million, 100 million, or 1 billion tokens against two fMRI benchmarks and one 
behavioral (reading times) benchmark. Because children are exposed to approximately 100 
million words during the first 10 years of life, we consider the 100-million-token model 
developmentally plausible. Second, we test the performance of a GPT-2 model that is trained on 
a 9-billion dataset to reach state-of-the-art next-word prediction performance against the same 
human benchmarks at different stages during training. Across both approaches, we find that (i) 
the models trained on a developmentally plausible amount of data already achieve near-
maximal performance in capturing neural and behavioral responses to language. Further, (ii) 
lower perplexity—a measure of next-word prediction performance—is associated with stronger 
alignment with the human benchmarks, suggesting that models that have received enough 
training to achieve sufficiently high next-word prediction performance also acquire human-like 
representations of the linguistic input. In tandem, these findings establish that although some 
training is necessary for the models’ ability to predict human responses to language, a 
developmentally realistic amount of training (~100 million tokens) may suffice. 

 

Summary 

Are artificial neural network (ANN) language models useful as models of human language 
processing? Some of these models have been shown to capture human responses to language 
with relatively high accuracy. However, these models are trained on vastly more data than what 
children are exposed to during language acquisition, raising questions about their value for 
understanding the human language system. Here, we systematically manipulate the amount of 
training data that ANN models receive and show that models that are trained on 
developmentally plausible amounts of language data (approximately 100 million words, roughly 
corresponding to a child’s first 10 years of life) achieve near-maximal performance on human 
neural and behavioral benchmarks. These developmentally plausible models—rather than 
models that achieve state-of-the-art performance on the next-word prediction task—hold 
substantial promise in providing mechanistic-level insights into human language processing. 
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Introduction 
A central objective in cognitive neuroscience is to develop models that can accurately predict 
human brain responses and behavior. In the neuroscience of language, some artificial neural 
network (ANN) language models were recently shown to be effective for explaining human brain 
activity and behavior during language processing (Caucheteux & King, 2022; Schrimpf et al., 
2021; Toneva & Wehbe, 2019; Gauthier & Levy, 2019; Wilcox et al., 2020). For example, 
Schrimpf et al. (2021) examined the ability of 40+ language models to capture human 
responses to language and found that transformer architectures (Radford et al., 2019; Vaswani 
et al., 2017) fare best in aligning with human data. However, off-the-shelf models vary along 
many dimensions, making it difficult to unambiguously attribute any given model’s success in 
aligning with human data to particular model properties (architecture, objective function, 
amount/kind of training data, etc.). Gaining insights into human linguistic mechanisms requires 
controlled ‘experiments’ on the models, where different properties are systematically 
manipulated (Hu et al., 2020; Kumar et al., 2022; Warstadt & Bowman, 2019). This is the 
approach we adopt here in order to investigate how the amount of training data affects model-
to-human alignment. 
 
One common criticism of ANN models as models of human language processing is that their 
training data size (often, billions of words) far surpasses the amount of language exposure that 
children get (Chang & Bergen, 2021; Dupoux, 2018; Linzen & Leonard, 2018; van Schijndel et 
al., 2019); see Warstadt & Bowman, 2022 for discussion). Hart & Risley (1992) estimated that 
children are exposed to 3-11 million words each year, so by the time they turn 10 and acquire 
adult-like linguistic competence, they are exposed to 30-110 million words. In contrast to a 
human child, who can learn a language from only ~100 million words (or less), some current 
models get orders of magnitude more training data (20,000 human years worth for some 
models; Warstadt and Bowman 2022). Here, we ask whether this extensive training is 
necessary for the models to acquire brain-like representations. 
 
Prior studies on the effects of training data on the models’ linguistic ability found that even with 
limited amounts of training data, models achieve considerable proficiency (Warstadt and 
Bowman, 2022). For example, Hu et al. (2020) and Zhang, Warstadt et al. (2021) report 
impressive syntactic generalizations in a BERT model (Devlin et al., 2018) trained on only 
millions of tokens (see also Huebner & Willits, 2021; Pannitto & Herbelot, 2020 for related 
evidence from a RoBERTa model trained on 5 million words of child-directed speech). And 
Pérez-Mayos et al. (2021) find that a RoBERTa model (Liu et al., 2019) trained on 100 million 
tokens performs similarly on several syntactic benchmarks to a model trained on 1 billion words. 
These findings suggest that massive amounts of training may not be necessary for models to 
acquire certain aspects of linguistic competence. However, it is not known whether models 
trained on limited amounts of data can also explain human responses to language. 
 
Here, we evaluate how the amount of training data affects model-to-human alignment. In line 
with increasing emphasis in the field on robustness and replicability (Button et al., 2013; 
Ioannidis et al., 2014; Poldrack et al., 2017; Simmons et al., 2011), we adopt two 
complementary approaches (Figure 1). First, we investigate how well GPT-2 models (Radford 
et al., 2019), trained on different-size datasets (1, 10, 100 million, or 1 billion) to reach their best 
training task performance, predict human data. Second, we investigate how a GPT-2 model’s 
ability to predict human responses changes over the course of training on a large dataset in an 
effort to capture the ‘developmental trajectory’ of model-to-brain alignment. In addition, we also 
probe the role of model perplexity in the ability of a model to develop human-like 
representations of the linguistic input. To foreshadow the key result, we find that models reach 
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high performance in predicting human responses to language even with realistic amounts of 
training data. 

 

Methods  

Experimental Design 

Human datasets (benchmarks) 

The human datasets used here were identical to those used in Schrimpf et al. (2021). We 
describe them here briefly. 

Neural dataset 1: fMRI (Pereira 2018) 

We used data from two experiments in Pereira et al. (2018). Experiment 2 (n=9) consisted of 
384 sentences across 96 passages. Experiment 3 (n=9) consisted of 243 sentences across 72 
passages. In both experiments, each sentence was presented on the screen for 4 seconds, 
followed by 4 seconds of fixation, and each participant viewed the set of sentences 3 times 
across three fMRI scanning sessions. The stimuli for both experiments were designed to span a 
broad range of contents. 

Neural dataset 2: fMRI (Blank 2014) 

We used the data from Blank et al. (2014) for 5 out of 10 participants that were exposed to the 
same materials. Participants listened to stories from the Natural Stories corpus (Futrell et al., 
2018), each around 5 minutes long. These stories contain a high number of rare words and 
syntactic constructions in natural linguistic contexts. 

Behavioral dataset (Futrell 2018) 

We used the self-paced reading data from (Futrell et al. 2018). 179 participants read stories 
presented one word at a time (e.g., Just et al., 1982), and with each button press, the current 
word would disappear in place of the new word. The time between each key press was used as 
a measure of comprehension difficulty. Each participant read between 5 and 10 stories and 
answered comprehension questions at the end of each story. We excluded reading times 
outside of the [100ms, 3000ms] window. 

Artificial Neural Network Models 

We used two different implementations of a GPT-2-style model. For Experiment 1, where a 
model was trained on a dataset with a controlled number of tokens, we used the GPT-NEOX 
library which is a distributed training framework that uses the DeepSpeed library (Black et al. 
2022; Aminabadi et al. 2022). We used a unidirectional-attention transformer model (GPT-2; 
Radford et al. 2019) with 12 layers and an embedding layer which was learned during training. 
Each layer had a size of 768 units and consisted of 4 main blocks (Figure 1A): (i) 1st layer 
normalization, (ii) self-attention, (iii) 2nd layer normalization, and (iv) the feedforward layer. The 
final layer consisted of a linear projection with a sigmoid nonlinearity that mapped hidden states 
into probabilities over the dictionary. The context size was 1,024 tokens. To see if our results 
would generalize to bidirectional-attention transformer architectures, we additionally used 
publicly available miniBERTa models1 trained on the same datasets as the GPT-2 models 

                                                 
1 https://huggingface.co/nyu-mll 
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(Zhang et al., 2020). (We did not include the model trained on the smallest (1 million tokens) 
dataset, for which Zhang et al. (2020) used a smaller-size model, which therefore would not be 
directly comparable to the other models.) The miniBERTas use the same design as the 
RoBERTa ‘base’ model (Liu et al. 2019)—a bidirectional-attention model with 12 layers, each 
768 units in size, and a context size of 512 tokens. Importantly, RoBERTa has the same 
number of parameters as GPT-2 (125 million), allowing for a relatively controlled comparison of 
uni- and bidirectional architectures. 
 
For Experiment 2, to investigate model training dynamics with a very large dataset, where 
during the early stages of the training the model continues to see new input (cf. doing multiple 
passes through a smaller-size training corpus as in Experiment 1), we used GPT-2 model 
weights from a publicly available model from the HuggingFace Transformers library  
(https://huggingface.co/stanford-crfm). The model has a similar architecture to the GPT-2 model 
used in Experiment 1. 

Training  

Training dataset  

For Experiment 1, we combined the BookCorpus (Zhu et al., 2015) and English Wikipedia (Liu 
et al., 2019; Zhu et al., 2015) with a 1:3 ratio. We then created 4 different datasets with 1 million, 
10 million, 100 million, and 1 billion words. These were used for training both the GPT-2 models 
and the minBERTa models. For Experiment 2, we used a model that was trained on the 
OpenWebText corpus (Gokaslan & Cohen, 2019) with close to 10 billion words. 
 

Training procedure  

For Experiment 1, to train the GPT-2 models, we used standard initialization from the GPT-
NEOX library and standard training parameters (Radford et al., 2019; see Suppl. Figure 1 for 
details). After training, the model weights with the smallest validation perplexity were selected 
for evaluation on the fMRI and behavioral benchmarks. To train the miniBERTa models, we 
used standard initialization and training parameters from the Hugging Face Transformers library 
(Liu et al. 2019). 
 
Additionally, we created another untrained version of the GPT-2 model in order to investigate 
the effects of different initializations on the model-to-human alignment and thus to isolate the 
effects of model architecture alone (i.e., the units and the patterns of connections among them) 
on brain predictivity. This version implemented the same unidirectional mask as the trained 
models, but all the weights were set to a gaussian distribution with a fixed mean and standard 
deviation (mean: 0, standard deviation: 0.02 for the layer normalization, self-attention, and 
feedforward layer weights; see Supp. Figure 5 for a detailed comparison with the Hugging Face 
initialization parameters). 
 
For Experiment 2, the GPT-2 model was trained with standard initialization and training 
parameters until it reached state-of-the art perplexity values. We selected several checkpoints 
at which we extracted model representations for evaluation on the human benchmarks. The 
checkpoints were selected in a logarithmic manner (0, 0.01, 0.1, 1.0, 10.0, and 100% of training 
steps. Based on Radford et al. (2019), the size of the dataset used in training GPT-2 is 
estimated at 40 billion tokens; given the batch size used for training (512 tokens), the context 
size (1,024 tokens), and the total number of training steps (400,000), 100% of training 
represents about 5 complete passes over the training data (and  only in the 100% condition 
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does the model see any training sequence more than once), and 10% (or fewer) of training 
steps does not go fully over the training data, so the model continues to receive new input. It is 
important to note that unlike Experiment 1, in Experiment 2 models are continuously exposed to 
new samples over batches (rather than doing multiple passes through a smaller-size training 
corpus as in Experiment 1), making it not straightforward to draw a parallel between the 
amounts of data used for the two experiments. 

Analyses 

Model comparison to the fMRI benchmarks 

Following Schrimpf et al. (2021), from each layer of each model, we first extracted the 
representation for all the stimuli that were used in the human fMRI experiments. We then split 
the data into 5 equal-size batches and used 80% of the data to build a regression model 
between model activations and responses in the language network (individual voxel responses 
for Pereira et al., 2018)or responses in the brain regions of interest (ROIs) for Blank et al., 
2014), as defined by an extensively validated language ‘localizer’ paradigm (Fedorenko et al., 
2010; Lipkin et al., 2022). We then used the remaining 20% of the data to generate predictions 
for unseen stimuli, and these predictions were compared with the brain measurements for the 
same stimuli using Pearson correlation. This was done for each participant separately, resulting 
in a score per participant based on the median (over voxels/ROIs) model-to-brain correlation. 
We then computed a median across participants and divided it by an estimated ceiling value to 
get a normalized score (see SI section 7 in Schrimpf et al., 2021 for additional details). 

Model comparison to the behavioral benchmark 

Following Schrimpf et al. (2021), from the last layer of each model, we extracted the 
representation for all the stimuli that were used in the behavioral experiment. We then built a 
regression model and computed correlations between model predictions and human behavioral 
responses for unseen stimuli, in a similar manner to the fMRI benchmarks. 

Model perplexity 

Following standard practice (e.g., Jelinek et al., 1977), we used perplexity as a measure of 
model performance on the language prediction tasks (next-word prediction for the GPT-2 
models and missing-word prediction for the miniBERTa models). For both experiments, we used 
the test set from the wikitext-103-raw-v1 dataset (Merity et al., 2016) to compute perplexity. 
Perplexity was computed using a context size of 1,024 tokens and a stride of 512 tokens. 
 

Code Accessibility 
The human benchmarks and the code for relating model representations to the benchmarks are 
publicly available at https://github.com/mschrimpf/neural-nlp. For Experiment 1, the GPT-2 
models and the representations extracted for all the benchmarks are available upon request 
(and will soon be uploaded to the Hugging Face library); the miniBERTa models are available 
upon request; the checkpoints are available at https://huggingface.co/nyu-mll. (The training 
corpora used for Experiment 1 have copyright constraints so cannot be made publicly 
available.) For Experiment 2, the model checkpoints are available at: 
https://huggingface.co/stanford-crfm; the training corpus is available through the Hugging Face 
library. 
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Results 

1a. Models trained on relatively small amounts of training data can predict human 
neural and behavioral responses to language 
We started by examining the performance of a unidirectional transformer model trained on the 
standard language modeling task in predicting human responses during language processing. 
Specifically, we tested a GPT-2 architecture (Figure 1A), which has previously been shown to 
best capture human neural and behavioral responses (e.g., Schrimpf et al. 2021). We trained 
four independent models on 1 million, 10 million, 100 million, and 1 billion tokens, respectively 
(Suppl. Figure 1). This range includes the estimated level of language exposure during early 
life: ~100 million (Hart & Risley, 1992). After training, we selected the checkpoint with the best 
perplexity on the validation set and tested how well the model representations capture human 
neural responses in the language-selective network (Fedorenko et al., 2011) and behavioral 
responses (Figure 1B). 
 

 

Figure 1. Methodological approach. A. Unidirectional-attention transformer architecture. 
Text input is processed sequentially to predict the next likely word at each step. B. The set-up 
for Experiments 1 and 2. In Experiment 1, four models were trained using different-size 
datasets, and for each model, the weights with the best validation perplexity were frozen and 
used in the model-to-brain comparison. In Experiment 2, the GPT-2 model was trained using 
a very large dataset, and the weights were frozen at different steps during training and used in 
the model-to-brain comparison. C. Model representations were related to human 
representations by building a linear regression between unit activations for each layer of the 
model and voxel/region activity (in the language-selective network; Fedorenko et al., 2011) or 
reading times for the stimuli used in each of the benchmarks. This regression was then used 
to make predictions about human neural/behavioral responses for unseen language stimuli, 
and a Pearson correlation was computed between these predictions and the observed 
responses. D. The general pipeline for predicting human brain and behavioral responses. For 
each benchmark, each model was exposed to the same language stimuli as humans, and the 
model-to-brain match was evaluated as shown in C. 
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For the Pereira2018 fMRI benchmark (Pereira et al. 2018; Schrimpf et al. 2021), we observed a 
consistent increase in performance with an increase in the size of the training set (Figure 2A; 
see Suppl. Figure 4 for evidence—for this and the other benchmarks—of robustness of this 
pattern to seed choice during model initialization; cf. Mehrer et al., 2021). Critically, however, a 
model trained on just 100 million tokens already exhibits brain predictivity similar to that reported 
in Schrimpf et al. (2021) for the fully trained GPT-2 model. The untrained model performance 
differs between the two initializations (see Methods - Training Procedure; Supp. Figure 5). The 
version initialized with the standard Hugging Face parameters performs well above chance, as 
reported in Schrimpf et al. (2021; see also Caucheteux & King, 2022). However, the version 
initialized with the alternative parameters (all weights set to a normal distribution with a mean of 
0 and a standard deviation of 0.02) performs around 0 (Figure 2A). 
 
These results generalize to the Blank2014 fMRI benchmark, except that the model trained on 10 
million tokens exhibits a drop relative to the model trained on 1 million tokens, and then, for 100 
million tokens, the model performance recovers (Figure 2B). For the Futrell2018 behavioral 
benchmark, the results are similar to those observed for the Pereira2018 benchmark but 
plateauing in performance earlier, at the model trained with only 10 million tokens (Figure 2C). 
 
For the Pereira2018 and Futrell2018 benchmarks, some aspects of the results also generalize 
to a bidirectional transformer model (miniBERTa; Liu et al. 2019) (Suppl. Figure 2). In 
particular, similar to the GPT-2 models, we observed a consistent increase in model 
performance with an increase in the training dataset size, which suggests that this pattern is 
robust to architecture. However, for the Pereira2018 benchmark, the 100-million-token model 
still performs below the fully trained model reported in Schrimpf et al. (2021). For the Blank2014 
fMRI benchmark, even the 1-billion-token model performs well below the fully trained model as 
reported in Schrimpf et al. (2021). This difference between the GPT-2 and miniBERTa models in 
the amount of training they require to align with human data is likely due to the difference in the 
directionality of the attention mechanisms, with unidirectional-attention mechanisms being more 
sample efficient. Generalizing these results to other minimally different variants of uni- vs. 
bidirectional-attention transformer models will help strengthen this conclusion. 

 
In exploratory analyses, we investigated the patterns of model-to-brain alignment across model 
layers. Prior work in vision (Geiger et al., 2020; Storrs et al., 2021) has suggested that training 
affects model performance differently across layers, with early layers already reaching close to 
maximal performance with a limited amount of training, but later layers continuing to benefit 
from increasingly more training. In line with these prior observations, for the Pereira2018 
benchmark, we observed that for layers 4-9, performance peaks for the model trained on 1 
million tokens, and for the last three layers (layers 10-12), a consistent improvement in 
performance is observed with larger datasets (Figure 2G). The pattern is similar for the 
Blank2014 benchmark (Suppl. Figure 3A), with layers 3-9 peaking for the model trained on 1 
million tokens, and the last three layers showing better performance for models trained on larger 
datasets. (The pattern observed for the first three layers is less clear and varies between the 
two benchmarks.) 
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Figure 2. Model performance on the neural and behavioral human benchmarks as a 
function of training. 
A-C. Experiment 1 results: performance of the best-performing GPT-2 layer, as reported in 
Schrimpf et.al. (2021), in predicting language-responsive voxels’ activation in the Pereira2018 
fMRI benchmark (A), language regions' responses in the Blank2014 fMRI benchmark (B), and 
reading times in the Futrell2018 behavioral benchmark (C). The results are shown for i) two 
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versions of an untrained (Unt.) model (initialized in two different ways; see Methods; Unt. 
N(0,0.02) corresponds to the untrained model initialized with a mean of 0 and a standard 
deviation of 0.02; and Unt. HF corresponds to the untrained model initialized with the Hugging 
Face parameters) (black dots); ii) four models trained on datasets of different sizes (1M, 10M, 
100M, and 1B tokens) (blue-to-green dots connected by a line; the model trained on a 
developmentally plausible amount of data—100M—is marked with a red asterisk); and iii) a 
fully trained model, as reported in Schrimpf et al. (2021) (grey dots). 
D-F. Experiment 2 results: performance of the best-performing GPT-2 layer, as reported in 
Schrimpf et al. (2021), in predicting human responses in the Pereira2018 fMRI benchmark 
(D), the Blank2014 fMRI benchmark (E), and the Futrell2018 behavioral benchmark (F). The 
results are shown for i) two versions of an untrained model (initialized in two different ways; 
see Methods) (black dots); ii) a model trained on a large dataset examined at different points 
during the training (0.01%, 0.1%, 1%, 10%, and 100% of training steps) (purple-to-yellow dots 
connected by a line); and iii) a fully trained model, as reported in Schrimpf et al. (2021) (grey 
dots). 
G-H. Exploratory analyses of individual model layers: performance of the 12 GPT-2 model 
layers in predicting human neural responses in the Pereira2018 fMRI benchmark in 
Experiment 1 (G) and Experiment 2 (H). The results are shown for i) an untrained model 
(black dots); and ii) four models trained on datasets of different sizes (blue-to-green dots 
connected by a line in G) or a model trained on a large dataset at different points during the 
training (purple-to-yellow dots connected by a line in H). (Layer 0 is the token embedding 
layer, and layer 12 is the last transformer layer.) 

 

1b. In the presence of a large amount of training data, models only need a small 
amount of training to predict human data  
In the previous section, we investigated how models that are trained on a limited amount of data 
(until they reach their best performance on the target language modeling task) perform in 
predicting human data. However, humans, including children learning a language, are 
continuously exposed to new words and constructions. To better simulate such scenarios, as 
well as to evaluate the robustness of the results to approach, we examined how the ability of a 
model to predict human responses to language changes over time as the model is being trained 
on a very large dataset. To do so, we used a GPT-2 model that was trained on a dataset with 
over 9 billion tokens and selected several checkpoints during the training process (0.01, 0.1, 
1.0, 10.0, and 100% of training steps, where 100% of training steps corresponds to 3 complete 
passes over the training data). At each of these checkpoints, we tested how well the model 
representations capture human responses to language. 
 
For the Pereira2018 fMRI benchmark, the performance of the fully trained model (i.e., 100% of 
training steps) closely matches the results reported in Schrimpf et al. (2021), which suggests 
that model-to-human alignment is robust to the details of model implementation (as one would 
hope). Critically, mirroring the results from Experiment 1, we observed a consistent and nearly 
linear (on the log scale) increase in how well the model predicts neural data until the model 
reaches the 10% checkpoint, at which point the performance plateaus (Figure 2D; see Suppl. 
Figure 4 for evidence of robustness to seed choice during model initialization). The slight 
decrease in performance with more training suggests that more training does not necessarily 
lead to better alignment with human brain data, although it is possible that this result is due to 
the relatively spatially and temporally coarse nature of our neural measurements (i.e., fMRI 
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recordings) and that for finer-grained neural data, we might continue to see improvements with 
more training. 
 
For the Blank2014 fMRI benchmark, we observed a sharp increase in performance with only 
0.1% of training steps, followed by a drop at the 1% checkpoint and recovery of performance for 
the 10% and 100% checkpoints (Figure 2E). (The drop in performance after initial training 
resembles the drop we observed for a model trained on 10 million tokens in Experiment 1.) 
Similar to the Pereira2018 benchmark, the performance of the fully trained model closely 
replicates the results reported in Schrimpf et al. (2021). Critically, this performance level is lower 
than model performance at the 0.1% checkpoint. The Futrell2018 behavioral benchmark closely 
follows the pattern we observed with limited-size training datasets in Experiment 1, plateauing 
after the 0.1% checkpoint (Figure 2F). 
 
In exploratory analyses of the individual model layers, we observed that for the Pereira2018 
benchmark, performance is consistent across layers, with all layers showing a drop in 
performance after 10% of the training steps (Figure 2H). Additionally, as in Experiment 1 and in 
line with prior work in vision (e.g., Storrs et al. 2021; Geiger et al. 2022), early layers reach close 
to maximal performance earlier in the training (at the 1% checkmark) whereas later layers reach 
their peak close to the 10% checkmark (Figure 2G). 

2. Model perplexity predicts model performance on neural and behavioral 
benchmarks 
For ANN language models, perplexity (a measure of performance on the next-word prediction 
task) is a reliable predictor of model performance on diverse NLP benchmarks (e.g., Radford et 
al. 2019; Brown et al. 2020). Schrimpf et al. (2021) further found that (off-the-shelf) models that 
perform better on the next-word prediction task are also better able to capture human neural 
and behavioral responses (cf. Pasquiou et al., 2022). Here, we examined the relationship 
between model perplexity and model ability to predict human data for models that only differ in 
the size of the training corpus and for a model at different stages of training, in order to test 
whether better performance on the next-word prediction task is associated with more human-
like representations. 
 
As expected, perplexity is lower (i.e., the ability to predict upcoming words is better) for models 
that are trained on larger datasets (Figure 3A-C) and for a given model at the later stages of 
training (Figure 3D-F). Critically, for the Pereira2018 fMRI benchmark and the Futrell2018 
behavioral benchmark, across both Experiments 1 and 2, we observed a consistent relationship 
between perplexity and neural/behavioral predictivity, such that lower perplexity is associated 
with higher predictivity (Figure 3A,C,D,F). For the Blank2014 fMRI benchmark, the perplexity-
predictivity relationship is less stable, reflecting the drop in predictivity early in the training (for 
the model trained on 10 million tokens in Experiment 1, and at the 1% checkmark in Experiment 
2); importantly, this drop in predictivity is not due to an increase in perplexity (Figure 3B,E). 
 
We speculate that model perplexity may not be strongly predictive of human responses in the 
low-value range (e.g., Figures 3D-E) because the models may enter a state where they 
surpass humans in next-word prediction performance2, which could negatively affect their ability 
to capture human neural/behavioral data. 

                                                 
2 https://www.alignmentforum.org/posts/htrZrxduciZ5QaCjw/language-models-seem-to-be-much-better-
than-humans-at-next 
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Figure 3. Relationship between model perplexity and model ability to predict human 
data. 
A-C. Experiment 1 results: the relationship between perplexity, i.e., the model’s ability to 
predict the next word on an independent dataset (wikitext-103-raw-v1), shown on the x-axis, 
with lower values corresponding to better ability, and model performance in predicting 
language-responsive voxels’ activation in the Pereira2018 fMRI benchmark (A), language 
regions' responses in the Blank2014 fMRI benchmark (B), and reading times in the 
Futrell2018 behavioral benchmark (C). The results are shown for i) an untrained model (black 
dots); and ii) four models trained on datasets of different sizes (1M, 10M, 100M, and 1B 
tokens) (blue-to-green dots connected by a line; the model trained on a developmentally 
plausible amount of data—100M—is marked with a red asterisk). 
D-F. Experiment 2 results: the relationship between perplexity (shown on the x-axis, lower 
values correspond to better ability) and model performance in predicting human responses in 
the Pereira2018 fMRI benchmark (D), the Blank2014 fMRI benchmark (E), and the 
Futrell2018 behavioral benchmark (F). The results are shown for i) an untrained model (black 
dots); and ii) a model trained on a large dataset examined at different points during the 
training (0.01%, 0.1%, 1%, 10%, and 100% of training steps) (purple-to-yellow dots connected 
by a line). 
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Discussion 
In this work, we investigated the relationship between the amount of training data and brain 
predictivity for state-of-the-art artificial neural network (ANN) language models. Our study 
makes several contributions, as summarized next. 
 
Even when trained on a developmentally realistic amount of data, ANN language models 
align with human data. 
 
Using two fMRI benchmarks and a behavioral benchmark, we established that even with a 
realistic amount of training data (~100 million words, comparable to what humans get during the 
first 10 years of life; Hart & Risley, 1992), a GPT-2 model achieves near-maximal brain 
predictivity. This effect mostly generalizes to bidirectional-attention transformers (miniBERTa), 
although compared to GPT-2, such models appear to be less sample-efficient, requiring more 
training data to achieve peak predictivity. In a complementary approach, we showed that when 
trained on a large dataset, a GPT-2 model already achieves near-maximal predictivity with only 
10% of training steps, well before a full pass over the dataset. 
 
These results align with prior work in vision. For example, Geiger et al. (2020) found that even a 
small amount of training can result in model representations that are predictive of neural 
responses in macaques. Moreover, the logarithmic nature of the increase in brain predictivity 
between a model trained on 1 million tokens and a model trained on 1 billion tokens aligns with 
prior Natural Language Processing (NLP) results (e.g., see Kaplan et al., 2020 for evidence of a 
logarithmic relationship between training data size and the loss in training, and between model 
size and loss), as well as with vision research (e.g., see Geiger et al. 2020 for evidence of  a 
logarithmic relationship between training data size and brain predictivity). 
 
The key implication of these findings is that although state-of-the-art language models are 
trained on vast amounts of data (and performance on some NLP benchmarks continues to 
improve with more training), this large amount of training is not necessary for these models to 
acquire human-like representations. The fact that ANN models trained on a developmentally 
plausible amount of data can accurately capture responses to language helps address one of 
the most common criticisms of these models as models of human language processing. 
 
Alignment between untrained ANN language models and human neural data is strongly 
affected by the initial unit weight configuration. 
 
By relating different versions of untrained models to human data, this work clarifies the 
contributions of architecture to brain predictivity. Schrimpf et al. (2021; see also Caucheteux & 
King, 2022; Pasquiou et al., 2022) have found that untrained models predict neural data quite 
well, albeit worse than trained models. They speculated that good performance of untrained 
models might be due to the smoothing of word embeddings across layers in a way that enables 
the embeddings to capture some aspects of statistical regularities of language (perhaps 
something as general as nearby words being likely to be related to one another). However, what 
counts as ‘untrained’ is important to clarify. 
 
‘Untrained’ models come with a particular setting of their unit weights. A particular weight 
configuration may get ‘baked into’ a model during the process of model development, aimed at 
maximizing learning efficiency for the target task. Such potential ‘biases’ in initial, pre-trained 
weights may be akin to innate, evolution-shaped, aspects of brain structure, which may filter 
information in specific ways as it travels within or across brain areas, even before any learning 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.04.510681doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510681
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

of the input regularities has occurred (e.g., Zador, 2019). We showed that initializing a model 
with a normal distribution for all weights leads to the model being unable to predict neural data 
(predictivity is at ~0; of course, such a model is also unable to perform the next-word prediction 
task). (This inability to predict neural data for models initialized with a normal distribution is not 
due to the lack of activity propagation across layers, as shown in Suppl. Figure 7). 
 
In summary, reliable brain predictivity reported for untrained models in previous studies should 
not be taken as evidence that model architecture alone (i.e., the units and the patterns of 
connections among them) can capture human responses to language, or at least, it should be 
acknowledged that these effects are due to the particular pre-trained weight configurations. 
Furthermore, if a model can (at least partially) match human data with a few bits of information 
in the form of the initialization parameters (see Suppl. Figure 7 for evidence that above-
baseline human predictivity for some initializations may result from the representations for 
different sentences being more similar), then any results at that alignment level or below for 
trained models are not meaningful and we should focus on progress beyond that alignment 
level. Another important implication is that future attempts to align ANN models with human data 
should generalize their findings across different weight initializations. 
 
Model perplexity predicts brain scores. 
 
In line with Schrimpf et al.’s (2021) claim that models that perform better on next-word prediction 
are better at predicting brain data (see also Caucheteux & King, 2022), we found that model 
perplexity for different amounts of the training data is a good proxy for model performance in 
predicting human data. We observed this relationship both in Experiment 1, where we varied the 
size of the training dataset, and in Experiment 2, where we tested model representations at 
different points during the training on a large training dataset. These findings provide further 
evidence that optimizing for predictive representations—through training the models on the next 
word prediction task—may be critical for ANN models to acquire human-like representations. 
 
One recent study (Pasquiou et al., 2022) did not observe a relationship between perplexity and 
model performance on human neural data. We speculate that the lack of this relationship in 
Pasquiou et al.’s data may be because of the use of an extended-narrative stimulus (the entire 
‘The Little Prince’ book) rather than single sentences or short passages. In our experiments, the 
relationship between perplexity and brain predictivity is also weakest for the Blank2014 fMRI 
benchmark, which uses story stimuli. Why might this relationship be weak or non-existent for 
long narratives? One possible explanation is that the overall low encoding performance for such 
stimuli imposes a ceiling on the relationship between model-to-brain alignment and model 
perplexity (or other variables) (cf. Oh et al., 2022 for another hypothesis having to do with 
humans and models using different information for predicting upcoming words, especially in 
extended linguistic stimuli). 
 
Why models struggle with predicting neural responses to long narratives is a separate and 
important question. We offer a speculation. In the human brain, division of labor exists between 
i) the language-selective network, which integrates information within clauses/sentences but 
does not track longer-range contexts (e.g., I. A. Blank & Fedorenko, 2020), and ii) the Default 
network(s) (Buckner & DiNicola, 2019), which integrates information over extended temporal 
contexts (Lerner et al., 2011). Importantly, the Default network does not operate over word 
sequences; instead, the information that this system represents is likely abstract, as evidenced 
by the fact that it processes long contexts in both linguistic and non-linguistic stimuli (e.g., 
Baldassano et al., 2017; Simony et al., 2016). As a result, the ANN language models (like those 
used in current work and in Pasquiou et al., 2022) may simply lack representations that are 
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sufficiently abstract (removed from the stimulus) to match those in the Default network. Some of 
the newer models, like GPT-3, seem to be able to handle a greater degree of abstraction (e.g., 
Brown et al., 2020) and thus may be promising for future attempts to capture human neural 
responses to long and complex linguistic stimuli. 
 
Limitations and future directions 
 
We here have focused on the effects of the amount of training data on the ANN language 
models’ ability to capture human responses. However, the nature of the training data is also 
likely important. For example, training models on data that are similar to what children are 
exposed to could lead to improved neural predictivity (Chang and Bergen 2021; Warstadt and 
Bowman 2022). Indeed, this approach has been shown to improve vision models' ability to 
capture primate neural responses (Mehrer et al. 2021). Further, it will be important to investigate 
the role of the learning algorithms that the models use and their training objective, as both likely 
affect the representations that the models learn (e.g., see Zhuang et al., 2022 for evidence from 
vision). 
 
Another aspect of the ANN models that is important for building accurate models of human 
language processing is the model architecture. We here generalized our training effects across 
uni- and bidirectional-attention transformers, but a systematic investigation of the effects of 
diverse architectural parameters (e.g., the number and size of layers, number of attention 
heads, etc.) on the models’ ability to predict human data would be valuable. Tightly controlled 
comparisons between different classes of model architectures are more challenging but creating 
numerous model variants all trained on the same dataset (e.g., Storrs et al. 2021) could enable 
identification of architectural motifs that are essential for a good match with human neural and 
behavioral data. 
 
In future work, we aim to address these gaps to build increasingly more accurate and 
interpretable models of language processing in the brain.  
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Supplementary Figures 

 

Supplementary Figure 1. Training and validation loss for the models in Experiment 1. 
For all models, a training batch size of 64 was used (each element in a batch is a sequence of 
1,024 tokens). Training was done with a standard Adam optimizer (LR: 0.0006, beta: 
[0.9,0.999], eps:1e-8), and cosine learning rate (starting at 0.0006 and decaying over 320000 
training steps), with gradient accumulation and clipping, attention and hidden dropout ratio of 
0.1, and no weight decay. A. Training loss: as expected, all models show a drop in loss with 
additional training, and for models trained on smaller datasets, the rate of learning is faster. B. 
Validation loss: as expected, all models show a drop initially, and models trained on smaller 
datasets reach their minimum loss earlier in the training process and have higher values 
(corresponding to worse performance) than models trained on larger datasets. In both A and 
B, the vertical lines mark the step with the minimum validation loss (best model performance). 
The representations for the steps shown in B were used for testing against the human 
benchmarks. 

 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.04.510681doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.04.510681
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

 

 

Supplementary Figure 2. Model performance on the human benchmarks for the 
miniBERTa models as a function of training in Experiment 1. Performance of the best-
performing layer, as reported in Schrimpf et al. (2021), in predicting language-responsive 
voxels’ activation in the Pereira2018 fMRI benchmark (A), language regions' responses in the 
Blank2014 fMRI benchmark (B), and reading times in the Futrell2018 behavioral benchmark 
(C). The results are shown for i) an untrained model (black dots); ii) three models trained on 
datasets of different sizes (10M, 100M, and 1B tokens) (teal-to-green dots connected by a 
line; the model trained on a developmentally plausible amount of data—100M—is marked with 
a red asterisk); and iii) a fully trained model, as reported in Schrimpf et al. (2021) (grey dots). 
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Supplementary Figure 3. Exploratory analyses of individual model layers for the 
Blank2014 fMRI benchmark. Performance of the 12 GPT-2 model layers in predicting human 
neural responses in Experiment 1 (A) and Experiment 2 (B). The results are shown for i) an 
untrained model (black dots); and ii) four models trained on datasets of different sizes (blue-
to-green dots connected by a line in A) or a model trained on a large dataset at different 
points during the training (purple-to-yellow dots connected by a line in B). (Layer 0 is the token 
embedding layer, and layer 12 is the last transformer layer.) 
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Supplementary Figure 4. Robustness of the critical results to seed choice during 
initialization. The effects of different seeds used for model initialization (e.g., Mehrer et al., 
2020) on model performance on the human benchmarks in Experiment 1 (fMRI benchmarks: 
A-B; behavioral benchmark: C) and Experiment 2 (fMRI benchmarks: D-E; behavioral 
benchmark: F). For Experiment 1, two different seeds were used; for Experiment 3, three 
different seeds were used. 
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Supplementary Figure 5. A detailed comparison of the two model initializations for the 
untrained models in Experiment 2 (for a sample layer (layer 1)). The distribution of weight 
and bias values for the first layer normalization (A), two operations in self attention (B-C), the 
second layer normalization (D), two operations in feedforward processing (E-F). Unt. 
N(0,0.02) corresponds to the untrained model initialized with a mean of 0 and a standard 
deviation of 0.02; and Unt. HF corresponds to the untrained model initialized with the Hugging 
Face parameters. (The model initializations used for the untrained models in Experiment 1 are 
similar.)  
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Supplementary Figure 6. Performance of an untrained GPT-2 model and a GPT-2 model 
trained on the 10M tokens dataset, each initialized in two different ways, across layers. 
Performance of four GPT-2 models (an untrained model and a model trained on a 10M tokens 
dataset, each initialized with two different weight distributions; see Methods and Suppl. 
Figure 5) in predicting language-responsive voxels’ activation in the Pereira2018 fMRI 
benchmark. The untrained model initialized with a gaussian distribution (mean: 0; standard 
deviation: 0.02) performs close to 0 across layers. In contrast, the untrained model initialized 
with the Hugging Face (non-gaussian) parameters already achieves ~0.4 predictivity for some 
layers. After training, both models reach a similar level of alignment with the human data for 
their later layers. 
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Supplementary Figure 7. Effect of differences in model initialization for untrained models 
on model performance on the Pereira2018 benchmark. We created two variants of untrained 
models. Both used a gaussian weight distribution for the self-attention and feedforward 
components of the model, but critically one model (blue curve), the first layer normalization 
(Ln1) was set to 1 (as in the Hugging Face initialization), and the second layer. normalization 
(Ln2) was set to a gaussian distribution, and the other model (maroon curve), Ln1 was set to a 
gaussian distribution, and Ln2 – to 1 (as in the Hugging Face initialization). The third curve 
(orange) corresponds to a trained model for reference. 
A. Model performance on the Pereira2018 fMRI benchmark. The model with Ln1=1 exhibits a 
higher performance compared to the model with Ln2=1, suggesting that the first layer 
normalization plays a bigger role in contributing to above-zero performance for untrained 
models on the human benchmarks. 
B. Amplitude of activity in the three models. This graph demonstrates that the difference in 
performance between the two untrained models is not simply due to lack of activity propagation 
across layers; both untrained models and the trained model show similar scale of activation. 
C. Similarity of model representations among the linguistic stimuli in the Pereira2018 benchmark 
(higher values correspond to lower similarity). This graph demonstrates that setting Ln1 to 1 
(compared to setting Ln2 to 1 or using a trained model) results in more similar representations 
for the different linguistic stimuli (effectively, removing stimulus-specific encoding). This pattern 
may explain the above-zero predictivity of neural responses for the untrained model initialized 
with the Hugging Face parameters. 
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